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Abstract: This paper describes the characteristics of spectral filtering when using a rectangular pulse.
It discusses conditions for an ideal spectral filtering. It shows when parasitic sounds appear and
defines conditions to suppress them.
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1 INTRODUCTION

Audio signals are usually filtered by the IIR or the FIR filter, where the order of the filters determines
the steepness of them. Thus, if we use cutting edge filters, we have to use a high order filter [1].

Filtering in spectral domain looks like an easy way to emulate an ideal steep filter. It does this
by reducing unwanted frequencies in the spectral domain. But parasitic frequencies appear when
considering the real application of filtering in spectral domain [4]. The purpose of this article is to
describe these parasitic sounds and to suggest methods to suppress them.

2 DESCRIPTION OF FILTERING

Filtering in spectral domain means the suppression (or setting it to zero) of the desired spectral com-
ponents of a discrete signal x(n). This is the equivalent to the multiplication of the frequency spectrum
X(k) with a window W (k), where

W (k) =

{
1 for the components we want to keep,
0 for the components we want to reduce.

We get a final signal y(n) by the IDFT of the modified spectrum

y(n) = IDFT{X(k)W (k)} . (1)

3 IDEAL FILTER

In some specific conditions the parasitic frequencies do not appear.

If the signal x(n) contains only the frequency components of fd , where d takes the values 1 through
Ns/2 to which

fd =
Ns fs

2b
,where b ∈ Z, (2)



fd ≤
fs

2
, (3)

For example, let us have the signal xs(n), which consists of three harmonic frequencies with sine
f1 = 312.5 Hz, f2 = 1250 Hz, f3 = 1812.5 Hz. To minimize the impact of STFT (short-time Fast
Fourier transform) a sufficiently large number of the Nwith = 215 signal samples xs(n) must be used.
This signal is split to the segment xsi(n) size of N = 256 to calculate the STFT. The sampling frequency
fs = 4 kHz.

xs(n) =
1
3

sin(2πn
f1

fs
)+

1
3

sin(2πn
f2

fs
)+

1
3

sin(2πn
f3

fs
) (4)

Spectrum of signal Xs(k) is shown in Fig. 1.
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Figure 1: Spectrum of signal Xs(k), NSTFT = 215 , fs = 4 kHz

We want to design a rectangular window W (k) that suppresses f1 and f3 and keep f2, so the passband
is selected from fp1 = 700Hz to fp2 = 1500Hz.

At first, it is necessary to calculate resolution δ f of the spectrum for STFT.

δ f =
fs

N
= 15.325Hz, (5)

and find the nearest multiple of δ f for fp1 a fp2.

fp1 = 687.5 ; is the 44 spectral component
fp2 = 1500 ; is the 96 spectral component,

Because the xsi(n) is real, the window has to be symmetrical around the center ( fs/2) [3]), that

W (k) =

{
1 if k ∈ 〈44,96〉∪ 〈160,212〉
0 if k ∈ 〈0,43〉∪ 〈97,159〉∪ 〈213,255〉.

(6)

The results design the rectangular pulse W (k) displayed in Fig. 2.

We split the signal xs(n) on the segment xsi(n) size of 256, where i ∈ 〈0,127〉 . Each segment is
converted into the frequency domain and multiplied with the window W (k). After we calculate inverse
DFT and assign to the output sequence of y(n)(without attribution of overlap).

In Fig. 3 it can be seen the spectrum Y (k) after filtering. It is clear that the frequencies f1 and f3 are
ideally suppressed without any parasitic effects.
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Figure 2: Window W (k)
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Figure 3: Signal spectrum Xs(k) after filtering, NSTFT = 215 , fs = 4 kHz

4 REAL FILTER

If we have a discrete signal xz, it does not comply with the conditions of Equation (2) and (3). When
we apply filtering in the spectral domain on this signal the new (parasitic) frequencies appear. In the
example signal (1) we change the frequencies f1, f2, f3 thus the period of these frequencies are not
multiply with N. The selected frequencies are f1 = 300, f2 = 1300, f3 = 1600. All other parameters
including the window W (k) are same. The spectrum of this signal is shown in Fig. 4. Because any
period of frequencies f 1, f 2 and f 3 are not multiplies of Ns = 215 the energy of spectral components
is slightly spread.
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Figure 4: Spectrum of signal Xz(k) NSTFT = 215 , fs = 4 kHz

The spectrum of signal after the filtering is in Fig. 5. It can be seen as components f1 and f2 are
suppressed, but new(parasitic) frequencies appear near 650 Hz and 1500 Hz.

To describe these characteristics we use properties, the multiplication of two signals in spectral do-
main is equivalent to a circular convolution of these signals in time domain [2],

y(n) = IDFT{Xi(k)W (k)} ≡ xi(n)⊗w(n). (7)
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Figure 5: Spectrum of signal Xz(k) after filtering, NSTFT = 215 , fs = 4 kHz

As we see, the output signal y(n) is affected by the transforming characteristic of the rectangular pulse
w(n). And it can be expressed as

w(n) = IDFT [W(k)] . (8)

To derive the formula for the inverse transform of the rectangular pulse we use a formula for forward
transform of the rectangular pulse rw(n) to spectral domain Rw(k), that is [4]

Rw(k) =

M−1
2

∑
n=−M−1

2

e− jωn =
sin(M ω

2 )

sin(ω

2 )
, (9)

where M is the number of samples which rectangular pulse rw(n) was sampling. Then relation be-
tween DFT and IDFT is [2]

IDFT[W (k)] =
1
N

DFT[W (k)∗] = w(n) (10)

where W (k)∗ is complex conjugate.

After substitution into equation (9) we get

w(n) =
1
N

N

∑
k=0

e jωk =
sin(M ω

2 )

N sin(ω

2 )
. (11)

Because rectangular pulse can have shift δk from beginning we apply sentence of linearity [4] about
linear shifting

w(n) = e jωδk
1
N

δk+M

∑
k=δk

e jωk =
2cos(ωδk)sin(M ω

2 )

N sin(ω

2 )
, (12)

5 CONDITIONS OF FILTERING

In the previous chapter 4 the characteristic of transform rectangular window was derived. Example
of this function is shown in Fig.6. This function is periodic and because the side lobs have theoretical
infinitive length, the lobs overlap will occur. If we want to discover the relationship between effects
of overlap to result signal we have to found out the relationship between local maximum at beginning
(n = 0) and in the half of period (n = N/2 where the overlap is occur). For simplification, we expect
that M is odd (thus sin(Mπ/2) =±1), and also that the offset is zero.
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Figure 6: Two periods of signal w(n), N = 256,M = 7,δk = 0.

w(0) = lim
n→0

sin(Mπn)
N sin(πn)

=
M
N
, (13)

(At time zero the equation (12) is not defined that the limit function is used in (13).)

w(N/2) =
1
N

sin(M π

2 )

sin(π

2 )
=

1
N
, (14)

The maximum difference between local maxims of signal w(n) subscribe the suppression of the par-
asitic frequencies. That the conditions for attenuation Al of parasitic frequencies is

Al = 20log10

(
1
N
M
N

)
= 20log10

(
1
M

)
. (15)

Therefore if the attenuation of parasitic frequencies under 40dB is required the rectangular window
W (k) with at least 100 nonzero components must be designed.

6 CONCLUSION

This paper describes the properties of filtering using rectangular pulse in spectral domain. The IFFT
of discrete rectangular pulse is not the function sinc, as we can expect, but it is more complex
equation(12). Because the segment in time domain is limited the overlap is occur and it shows up
like a new parasitic frequencies. The attenuation of parasitic frequencies is indirectly depending on
number of components obtained in rectangular window (15).
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